Cartesian Kernel: An Efficient Alternative to the Pairwise Kernel

نویسندگان

  • Hisashi Kashima
  • Satoshi Oyama
  • Yoshihiro Yamanishi
  • Koji Tsuda
چکیده

Pairwise classification has many applications including network prediction, entity resolution, and collaborative filtering. The pairwise kernel has been proposed for those purposes by several research groups independently, and has been used successfully in several fields. In this paper, we propose an efficient alternative which we call a Cartesian kernel. While the existing pairwise kernel (which we refer to as the Kronecker kernel) can be interpreted as the weighted adjacency matrix of the Kronecker product graph of two graphs, the Cartesian kernel can be interpreted as that of the Cartesian graph, which is more sparse than the Kronecker product graph. We discuss the generalization bounds of the two pairwise kernels by using eigenvalue analysis of the kernel matrices. Also, we consider the N-wise extensions of the two pairwise kernels. Experimental results show the Cartesian kernel is much faster than the Kronecker kernel, and at the same time, competitive with the Kronecker kernel in predictive performance. key words: kernel methods, pairwise kernels, link prediction

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Pairwise Kernels: An Efficient Alternative and Generalization Analysis

Pairwise classification has many applications including network prediction, entity resolution, and collaborative filtering. The pairwise kernel has been proposed for those purposes by several research groups independently, and become successful in various fields. In this paper, we propose an efficient alternative which we call Cartesian kernel. While the existing pairwise kernel (which we refer...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Efficient Pairwise Learning Using Kernel Ridge Regression: an Exact Two-Step Method

Pairwise learning or dyadic prediction concerns the prediction of properties for pairs of objects. It can be seen as an umbrella covering various machine learning problems such as matrix completion, collaborative filtering, multi-task learning, transfer learning, network prediction and zero-shot learning. In this work we analyze kernel-based methods for pairwise learning, with a particular focu...

متن کامل

Solving Fuzzy Impulsive Fractional Differential Equations by Reproducing Kernel Hilbert Space Method

The aim of this paper is to use the Reproducing kernel Hilbert Space Method (RKHSM) to solve the linear and nonlinear fuzzy impulsive fractional differential equations. Finding the numerical solutionsof this class of equations are a difficult topic to analyze. In this study, convergence analysis, estimations error and bounds errors are discussed in detail under some hypotheses which provi...

متن کامل

Evaluation of Mango Seed Kernel Methanolic Extract on Metalloproteases in Carpet Viper (Echisocellatus) Venom: An in Vitro Experiment

Background: The global incidence of snakebite has become a major concern to the community. This study aimed to evaluate the effect of mango seed kernel methanol extract on metalloproteases in Carpet Viper (Echis ocellatus) venom. Methods: Mango seed kernel methanolic extract was evaluated in vitro for its anti-venom activity and inhibition of metalloproteases of Carpet Viper's (Echis ocellatus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 93-D  شماره 

صفحات  -

تاریخ انتشار 2010